Какие алгоритмы можно использовать для рисования бинарного дерева в консоли? Дерево реализовано в C. Например, BST с номерами: 2 3 4 5 8 будет отображаться на консоли как:
Какие алгоритмы можно использовать для рисования бинарного дерева в консоли? Дерево реализовано в C. Например, BST с номерами: 2 3 4 5 8 будет отображаться на консоли как:
Отъезд Печать двоичных деревьев в Ascii
Из @AnyOneElse Pastbin ниже:
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!Code originally from /http://www.openasthra.com/c-tidbits/printing-binary-trees-in-ascii/
!!! Just saved it, cause the website is down.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Printing Binary Trees in Ascii
Here we are not going to discuss what binary trees are (please refer this, if you are looking for binary search trees), or their operations but printing them in ascii.
The below routine prints tree in ascii for a given Tree representation which contains list of nodes, and node structure is this
struct Tree
{
Tree * left, * right;
int element;
};
This pic illustrates what the below routine does on canvas..
ascii tree
Here is the printing routine..
b5855d39a6b8a2735ddcaa04a404c125001
Auxiliary routines..
//This function prints the given level of the given tree, assuming
//that the node has the given x cordinate.
void print_level(asciinode *node, int x, int level)
{
int i, isleft;
if (node == NULL) return;
isleft = (node->parent_dir == -1);
if (level == 0)
{
for (i=0; i<(x-print_next-((node->lablen-isleft)/2)); i++)
{
printf(" ");
}
print_next += i;
printf("%s", node->label);
print_next += node->lablen;
}
else if (node->edge_length >= level)
{
if (node->left != NULL)
{
for (i=0; i<(x-print_next-(level)); i++)
{
printf(" ");
}
print_next += i;
printf("/");
print_next++;
}
if (node->right != NULL)
{
for (i=0; i<(x-print_next+(level)); i++)
{
printf(" ");
}
print_next += i;
printf("\\");
print_next++;
}
}
else
{
print_level(node->left,
x-node->edge_length-1,
level-node->edge_length-1);
print_level(node->right,
x+node->edge_length+1,
level-node->edge_length-1);
}
}
//This function fills in the edge_length and
//height fields of the specified tree
void compute_edge_lengths(asciinode *node)
{
int h, hmin, i, delta;
if (node == NULL) return;
compute_edge_lengths(node->left);
compute_edge_lengths(node->right);
/* first fill in the edge_length of node */
if (node->right == NULL && node->left == NULL)
{
node->edge_length = 0;
}
else
{
if (node->left != NULL)
{
for (i=0; i<node->left->height && i < MAX_HEIGHT; i++)
{
rprofile[i] = -INFINITY;
}
compute_rprofile(node->left, 0, 0);
hmin = node->left->height;
}
else
{
hmin = 0;
}
if (node->right != NULL)
{
for (i=0; i<node->right->height && i < MAX_HEIGHT; i++)
{
lprofile[i] = INFINITY;
}
compute_lprofile(node->right, 0, 0);
hmin = MIN(node->right->height, hmin);
}
else
{
hmin = 0;
}
delta = 4;
for (i=0; i<hmin; i++)
{
delta = MAX(delta, gap + 1 + rprofile[i] - lprofile[i]);
}
//If the node has two children of height 1, then we allow the
//two leaves to be within 1, instead of 2
if (((node->left != NULL && node->left->height == 1) ||
(node->right != NULL && node->right->height == 1))&&delta>4)
{
delta--;
}
node->edge_length = ((delta+1)/2) - 1;
}
//now fill in the height of node
h = 1;
if (node->left != NULL)
{
h = MAX(node->left->height + node->edge_length + 1, h);
}
if (node->right != NULL)
{
h = MAX(node->right->height + node->edge_length + 1, h);
}
node->height = h;
}
asciinode * build_ascii_tree_recursive(Tree * t)
{
asciinode * node;
if (t == NULL) return NULL;
node = malloc(sizeof(asciinode));
node->left = build_ascii_tree_recursive(t->left);
node->right = build_ascii_tree_recursive(t->right);
if (node->left != NULL)
{
node->left->parent_dir = -1;
}
if (node->right != NULL)
{
node->right->parent_dir = 1;
}
sprintf(node->label, "%d", t->element);
node->lablen = strlen(node->label);
return node;
}
//Copy the tree into the ascii node structre
asciinode * build_ascii_tree(Tree * t)
{
asciinode *node;
if (t == NULL) return NULL;
node = build_ascii_tree_recursive(t);
node->parent_dir = 0;
return node;
}
//Free all the nodes of the given tree
void free_ascii_tree(asciinode *node)
{
if (node == NULL) return;
free_ascii_tree(node->left);
free_ascii_tree(node->right);
free(node);
}
//The following function fills in the lprofile array for the given tree.
//It assumes that the center of the label of the root of this tree
//is located at a position (x,y). It assumes that the edge_length
//fields have been computed for this tree.
void compute_lprofile(asciinode *node, int x, int y)
{
int i, isleft;
if (node == NULL) return;
isleft = (node->parent_dir == -1);
lprofile[y] = MIN(lprofile[y], x-((node->lablen-isleft)/2));
if (node->left != NULL)
{
for (i=1; i <= node->edge_length && y+i < MAX_HEIGHT; i++)
{
lprofile[y+i] = MIN(lprofile[y+i], x-i);
}
}
compute_lprofile(node->left, x-node->edge_length-1, y+node->edge_length+1);
compute_lprofile(node->right, x+node->edge_length+1, y+node->edge_length+1);
}
void compute_rprofile(asciinode *node, int x, int y)
{
int i, notleft;
if (node == NULL) return;
notleft = (node->parent_dir != -1);
rprofile[y] = MAX(rprofile[y], x+((node->lablen-notleft)/2));
if (node->right != NULL)
{
for (i=1; i <= node->edge_length && y+i < MAX_HEIGHT; i++)
{
rprofile[y+i] = MAX(rprofile[y+i], x+i);
}
}
compute_rprofile(node->left, x-node->edge_length-1, y+node->edge_length+1);
compute_rprofile(node->right, x+node->edge_length+1, y+node->edge_length+1);
}
Here is the asciii tree structure…
struct asciinode_struct
{
asciinode * left, * right;
//length of the edge from this node to its children
int edge_length;
int height;
int lablen;
//-1=I am left, 0=I am root, 1=right
int parent_dir;
//max supported unit32 in dec, 10 digits max
char label[11];
};
выход:
2
/ \
/ \
/ \
1 3
/ \ / \
0 7 9 1
/ / \ / \
2 1 0 8 8
/
7
код:
int _print_t(tnode *tree, int is_left, int offset, int depth, char s[20][255])
{
char b[20];
int width = 5;
if (!tree) return 0;
sprintf(b, "(%03d)", tree->val);
int left = _print_t(tree->left, 1, offset, depth + 1, s);
int right = _print_t(tree->right, 0, offset + left + width, depth + 1, s);
#ifdef COMPACT
for (int i = 0; i < width; i++)
s[depth][offset + left + i] = b[i];
if (depth && is_left) {
for (int i = 0; i < width + right; i++)
s[depth - 1][offset + left + width/2 + i] = '-';
s[depth - 1][offset + left + width/2] = '.';
} else if (depth && !is_left) {
for (int i = 0; i < left + width; i++)
s[depth - 1][offset - width/2 + i] = '-';
s[depth - 1][offset + left + width/2] = '.';
}
#else
for (int i = 0; i < width; i++)
s[2 * depth][offset + left + i] = b[i];
if (depth && is_left) {
for (int i = 0; i < width + right; i++)
s[2 * depth - 1][offset + left + width/2 + i] = '-';
s[2 * depth - 1][offset + left + width/2] = '+';
s[2 * depth - 1][offset + left + width + right + width/2] = '+';
} else if (depth && !is_left) {
for (int i = 0; i < left + width; i++)
s[2 * depth - 1][offset - width/2 + i] = '-';
s[2 * depth - 1][offset + left + width/2] = '+';
s[2 * depth - 1][offset - width/2 - 1] = '+';
}
#endif
return left + width + right;
}
void print_t(tnode *tree)
{
char s[20][255];
for (int i = 0; i < 20; i++)
sprintf(s[i], "%80s", " ");
_print_t(tree, 0, 0, 0, s);
for (int i = 0; i < 20; i++)
printf("%s\n", s[i]);
}
Вывод:
.----------------------(006)-------.
.--(001)-------. .--(008)--.
.--(-02) .--(003)-------. (007) (009)
.-------(-06) (002) .--(005)
.--(-08)--. (004)
(-09) (-07)
или
(006)
+------------------------+---------+
(001) (008)
+----+---------+ +----+----+
(-02) (003) (007) (009)
+----+ +----+---------+
(-06) (002) (005)
+---------+ +----+
(-08) (004)
+----+----+
(-09) (-07)
Некоторые подсказки: расстояние между узлами на одной глубине (например, 2 и 4 или 3 и 8 в вашем примере) является функцией глубины.
Каждая печатная строка состоит из всех узлов с одинаковой глубиной, отпечатанных с самого левого node до самого правого node.
Таким образом, вам нужен способ, например, упорядочить ваши узлы в массивах строк, в соответствии с их глубиной, в порядке их самого левого.
Начиная с корня node, поиск по ширине будет посещать узлы в порядке глубины и самой левой.
Интервал между узлами может быть найден путем нахождения максимальной высоты дерева с использованием некоторой постоянной ширины для самых глубоких узлов и удвоения этой ширины для каждой меньшей глубины, так что ширина для любой глубины = (1 + maxdepth - currentdepth ) * глубочайшая ширина.
Это число дает вам напечатанную "горизонтальную ширину" каждого node на любой конкретной глубине.
Левый node расположен горизонтально в левой половине его родительской ширины, righ node в правой половине. Вы введете фиктивные прокладки для любого node, у которого нет родителей; проще всего сделать это, чтобы все листья были на той же глубине, что и самая глубокая node, с пустым значением. Очевидно, вам также придется компенсировать ширину значений, возможно, делая максимальную ширину глубины, по крайней мере, такой же широкой, как напечатанное (десятичное представление, предположительно) его наибольшего значения node.
Вот еще один пример, когда дерево реализовано в массиве:
#include <stdio.h>
#include <math.h>
#define PARENT(i) ((i-1) / 2)
#define NUM_NODES 15
#define LINE_WIDTH 70
int main() {
int tree[NUM_NODES]={0,1,2,3,4,5,6,7,8,9,1,2,3,4,5};
int print_pos[NUM_NODES];
int i, j, k, pos, x=1, level=0;
print_pos[0] = 0;
for(i=0,j=1; i<NUM_NODES; i++,j++) {
pos = print_pos[PARENT(i)] + (i%2?-1:1)*(LINE_WIDTH/(pow(2,level+1))+1);
for (k=0; k<pos-x; k++) printf("%c",i==0||i%2?' ':'-');
printf("%d",tree[i]);
print_pos[i] = x = pos+1;
if (j==pow(2,level)) {
printf("\n");
level++;
x = 1;
j = 0;
}
}
return 0;
}
Вывод:
0
1-----------------------------------2
3-----------------4 5-----------------6
7---------8 9---------1 2---------3 4---------5
У меня есть это небольшое решение в С++ - его можно легко преобразовать в c.
Моему решению требуется дополнительная структура данных для хранения текущей глубины node в дереве (это, потому что, если вы работаете с неполным деревом, данная глубина поддерева может не соответствовать его глубине в полном объеме дерево.)
#include <iostream>
#include <utility>
#include <algorithm>
#include <list>
namespace tree {
template<typename T>
struct node
{
T data;
node* l;
node* r;
node(T&& data_ = T()) : data(std::move(data_)), l(0), r(0) {}
};
template<typename T>
int max_depth(node<T>* n)
{
if (!n) return 0;
return 1 + std::max(max_depth(n->l), max_depth(n->r));
}
template<typename T>
void prt(node<T>* n)
{
struct node_depth
{
node<T>* n;
int lvl;
node_depth(node<T>* n_, int lvl_) : n(n_), lvl(lvl_) {}
};
int depth = max_depth(n);
char buf[1024];
int last_lvl = 0;
int offset = (1 << depth) - 1;
// using a queue means we perform a breadth first iteration through the tree
std::list<node_depth> q;
q.push_back(node_depth(n, last_lvl));
while (q.size())
{
const node_depth& nd = *q.begin();
// moving to a new level in the tree, output a new line and calculate new offset
if (last_lvl != nd.lvl)
{
std::cout << "\n";
last_lvl = nd.lvl;
offset = (1 << (depth - nd.lvl)) - 1;
}
// output <offset><data><offset>
if (nd.n)
sprintf(buf, " %*s%d%*s", offset, " ", nd.n->data, offset, " ");
else
sprintf(buf, " %*s", offset << 1, " ");
std::cout << buf;
if (nd.n)
{
q.push_back(node_depth(nd.n->l, last_lvl + 1));
q.push_back(node_depth(nd.n->r, last_lvl + 1));
}
q.pop_front();
}
std::cout << "\n";
}
}
int main()
{
typedef tree::node<int> node;
node* head = new node();
head->l = new node(1);
head->r = new node(2);
head->l->l = new node(3);
head->l->r = new node(4);
head->r->l = new node(5);
head->r->r = new node(6);
tree::prt(head);
return 0;
}
Распечатывает следующее:
0
1 2
3 4 5 6
Посмотрите на вывод команды pstree в Linux. Он не производит вывод в той форме, которую вы хотите, но IMHO это более читаемо таким образом.
I вторая рекомендация на букву. Мне пришлось сделать это в последнее время, чтобы напечатать дерево VAD процесса Windows, и я использовал язык DOT (просто распечатайте узлы из функции бинарного дерева):
http://en.wikipedia.org/wiki/DOT_language
Например, ваш файл DOT будет содержать:
digraph graphname { 5 -> 3; 5 -> 8; 3 -> 4; 3 -> 2; }
Вы создаете граф с помощью dotty.exe или преобразуете его в PNG с помощью dot.exe.
Я думаю, что вы не должны сами это кодировать, но посмотрите Tree:: Visualize, который, кажется, является хорошей реализацией в Perl с различными возможными стилями и использовать/порт один из алгоритмов там.
У меня есть программа Ruby, которая вычисляет координаты, где каждый node в двоичном дереве следует рисовать здесь: http://hectorcorrea.com/Blog/Drawing-a-Binary-Tree-in-Ruby
Этот код использует очень простой алгоритм для вычисления координат, и он не "эффективен по площади", но это хороший старт. Если вы хотите увидеть код "live", вы можете проверить его здесь: http://binarytree.heroku.com/
Очень простое С++ решение печатает дерево в горизонтальном направлении:
5
1
5
9
7
14
Функция кода (Node::print()
важна):
#include<iostream>
using namespace std;
class Tree;
class Node{
public:
Node(int val): _val(val){}
int val(){ return _val; }
void add(Node *temp)
{
if (temp->val() > _val)
{
if (_rchild)
_rchild->add(temp);
else
{
_rchild = temp;
}
}
else
{
if (_lchild)
_lchild->add(temp);
else
{
_lchild = temp;
}
}
}
void print()
{
for (int ix = 0; ix < _level; ++ix) cout << ' ';
cout << _val << endl;
++_level;
if (_lchild)
{
_lchild->print();
--_level;
}
if (_rchild)
{
_rchild->print();
--_level;
}
}
private:
int _val;
Node *_lchild;
Node *_rchild;
static int _level;
};
int Node::_level = 0;
class Tree{
public:
Tree(): _root(0){}
void add(int val)
{
Node *temp = new Node(val);
if (!_root)
_root = temp;
else
_root->add(temp);
}
void print()
{
if (!_root)
return;
_root->print();
}
private:
Node *_root;
};
int main()
{
Tree tree;
tree.add(5);
tree.add(9);
tree.add(1);
tree.add(7);
tree.add(5);
tree.add(14);
tree.print();
}