Недавно я рассмотрел интересную реализацию для сверточного текстового классификации. Однако все рассмотренные мной коды TensorFlow используют случайные (не предварительно подготовленные) векторы внедрения, такие как:
with tf.device('/cpu:0'), tf.name_scope("embedding"):
W = tf.Variable(
tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
name="W")
self.embedded_chars = tf.nn.embedding_lookup(W, self.input_x)
self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
Кто-нибудь знает, как использовать результаты Word2vec или встроенного в GloVe встраивания слов вместо случайного?