У меня есть фрейма данных панд, как:
a b
A 1
A 2
B 5
B 5
B 4
C 6
Я хочу сгруппировать по первому столбцу и получить второй столбец в виде списков в строках:
A [1,2]
B [5,5,4]
C [6]
Можно ли сделать что-то подобное с помощью групповых панд?
У меня есть фрейма данных панд, как:
a b
A 1
A 2
B 5
B 5
B 4
C 6
Я хочу сгруппировать по первому столбцу и получить второй столбец в виде списков в строках:
A [1,2]
B [5,5,4]
C [6]
Можно ли сделать что-то подобное с помощью групповых панд?
Вы можете сделать это, используя groupby
для группировки по интересующему столбцу, а затем apply
list
для каждой группы:
In [1]: df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6]})
df
Out[1]:
a b
0 A 1
1 A 2
2 B 5
3 B 5
4 B 4
5 C 6
In [2]: df.groupby('a')['b'].apply(list)
Out[2]:
a
A [1, 2]
B [5, 5, 4]
C [6]
Name: b, dtype: object
In [3]: df1 = df.groupby('a')['b'].apply(list).reset_index(name='new')
df1
Out[3]:
a new
0 A [1, 2]
1 B [5, 5, 4]
2 C [6]
import numpy as np
df = pd.DataFrame({'a': np.random.randint(0, 60, 600), 'b': [1, 2, 5, 5, 4, 6]*100})
def f(df):
keys, values = df.sort_values('a').values.T
ukeys, index = np.unique(keys, True)
arrays = np.split(values, index[1:])
df2 = pd.DataFrame({'a':ukeys, 'b':[list(a) for a in arrays]})
return df2
In [301]: %timeit f(df)
1000 loops, best of 3: 1.64 ms per loop
In [302]: %timeit df.groupby('a')['b'].apply(list)
100 loops, best of 3: 5.26 ms per loop
Как вы сказали, метод groupby
объекта pd.DataFrame
может выполнять задание.
Пример
L = ['A','A','B','B','B','C']
N = [1,2,5,5,4,6]
import pandas as pd
df = pd.DataFrame(zip(L,N),columns = list('LN'))
groups = df.groupby(df.L)
groups.groups
{'A': [0, 1], 'B': [2, 3, 4], 'C': [5]}
который дает и индексное описание групп.
Чтобы получить элементы отдельных групп, вы можете сделать, например
groups.get_group('A')
L N
0 A 1
1 A 2
groups.get_group('B')
L N
2 B 5
3 B 5
4 B 4
Удобный способ добиться этого будет:
df.groupby('a').agg({'b':lambda x: list(x)})
Посмотрите на написание пользовательских агрегатов: https://www.kaggle.com/akshaysehgal/how-to-group-by-aggregate-using-py
Чтобы решить эту проблему для нескольких столбцов кадра данных:
In [5]: df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6],'c'
...: :[3,3,3,4,4,4]})
In [6]: df
Out[6]:
a b c
0 A 1 3
1 A 2 3
2 B 5 3
3 B 5 4
4 B 4 4
5 C 6 4
In [7]: df.groupby('a').agg(lambda x: list(x))
Out[7]:
b c
a
A [1, 2] [3, 3]
B [5, 5, 4] [3, 4, 4]
C [6] [4]
Этот ответ был вдохновлен ответом Анамики Моди. Спасибо!
Используйте любой из следующих groupby
и agg
рецептов.
# Setup
df = pd.DataFrame({
'a': ['A', 'A', 'B', 'B', 'B', 'C'],
'b': [1, 2, 5, 5, 4, 6],
'c': ['x', 'y', 'z', 'x', 'y', 'z']
})
df
a b c
0 A 1 x
1 A 2 y
2 B 5 z
3 B 5 x
4 B 4 y
5 C 6 z
Чтобы объединить несколько столбцов в виде списков, используйте любое из следующего:
df.groupby('a').agg(list)
df.groupby('a').agg(pd.Series.tolist)
b c
a
A [1, 2] [x, y]
B [5, 5, 4] [z, x, y]
C [6] [z]
Чтобы сгруппировать список только в один столбец, преобразуйте groupby в объект SeriesGroupBy
, а затем вызовите SeriesGroupBy.agg
. Использование,
df.groupby('a').agg({'b': list}) # 4.42 ms
df.groupby('a')['b'].agg(list) # 2.76 ms - faster
a
A [1, 2]
B [5, 5, 4]
C [6]
Name: b, dtype: object
Давайте используем df.groupby
со списком и конструктором Series
pd.Series({x : y.b.tolist() for x , y in df.groupby('a')})
Out[664]:
A [1, 2]
B [5, 5, 4]
C [6]
dtype: object
Если вы ищете уникальный список при группировании нескольких столбцов, это может помочь:
df.groupby('a').agg(lambda x: list(set(x))).reset_index()
Здесь я сгруппировал элементы с "|" в качестве разделителя импорт панд как pd
df = pd.read_csv('input.csv')
df
Out[1]:
Area Keywords
0 A 1
1 A 2
2 B 5
3 B 5
4 B 4
5 C 6
df.dropna(inplace = True)
df['Area']=df['Area'].apply(lambda x:x.lower().strip())
print df.columns
df_op = df.groupby('Area').agg({"Keywords":lambda x : "|".join(x)})
df_op.to_csv('output.csv')
Out[2]:
df_op
Area Keywords
A [1| 2]
B [5| 5| 4]
C [6]